VCT Bibliography

Vibrational ChronoTherapy(TM)

Circadian and Peripheral Rhythm

Roenneberg T, Merrow M. The Circadian Clock and Human Health. Curr Biol. 2016 May 23;26(10):R432-43. doi:  0.1016/j.cub.2016.04.011. Review.

Mohawk JA, Green CB, Takahashi JS. 2012. Central and peripheral circadian clocks in mammalsAnnu. Rev. Neurosci. 35, 445–46210.1146/annurev-neuro-060909-153128

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710582/

Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105:15172–15177.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532700/

Heyde I, Oster H. Differentiating external zeitgeber impact on peripheral circadian clock resetting. Sci Rep. 2019;9(1):20114. Published 2019 Dec 27. doi:10.1038/s41598-019-56323-z

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934673/

Abraham U, Granada AE, Westermark PO, Heine M, Kramer A, Herzel H. Coupling governs entrainment range of circadian clocks. Mol. Syst. Biol. 2010;6:438.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010105/

Granada AE, Cambras T, Diez-Noguera A, Herzel H. 2010. Circadian desynchronizationJ. R. Soc. Interface Focus 1, 153–16610.1098/rsfs.2010.0002

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262243/

Kevin D. Himberger, Hsiang-Yun Chien, Christopher J. Honey, Principles of Temporal Processing Across the Cortical Hierarchy, Neuroscience, Volume 389, 2018, Pages 161-174, ISSN 0306-4522, doi.org/10.1016/j.neuroscience.2018.04.030.

http://www.sciencedirect.com/science/article/pii/S0306452218302951

Zhang Y, Khorkova O, Rodriguez R, Golowasch J. Activity and neuromodulatory input contribute to the recovery of rhythmic output after decentralization in a central pattern generator. J Neurophysiol. 2009;101:372–386.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637013/

LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci. 2014;15(7):443–454. doi:10.1038/nrn3743

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254760/

Boivin DB. Influence of sleep-wake and circadian rhythm disturbances in psychiatric disorders. J Psychiatry Neurosci. 2000;25:446–58.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1408010/

Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest. 2010;120:2600–9.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898589/

Ruby NF, et al. Hippocampal-dependent learning requires a functional circadian system. Proc Natl Acad Sci U S A. 2008;105:15593–8.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563080/

 

Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci U S A. 2011;108:1657–62.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3029753/

Balasubramaniam P, Jarina Banu L. Synchronization criteria of discrete-time complex networks with time-varying delays and parameter uncertainties. Cogn Neurodyn. 2014;8:199–215. doi: 10.1007/s11571-013-9272-y.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012067/

Qu J, Wang R, Yan C, Du Y (2013) Oscillations and synchrony in a cortical neural network. Cogn Neurodyn. doi:10.1007/s11571-013-9268-7

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945459/

Shi X, Wang QY, Lu QS. Firing synchronization and temporal order in noisy neuronal networks. Cogn Neurodyn. 2008;2(3):195–206. doi: 10.1007/s11571-008-9055-z.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518750/

Sun WG, Wang RB, Wang WX, Cao JT. Analyzing inner and outer synchronization between two coupled discrete-time networks with time delays. Cogn Neurodyn. 2010;4(3):225–231. doi: 10.1007/s11571-010-9118-9.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918754/

Yu S, Huang DB, Singer W, et al. A small world of neuronal synchrony. Cereb Cortex. 2008;18(2):2891–2901. doi: 10.1093/cercor/bhn047.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583154/

Harris-Warrick RM. Neuromodulation and flexibility in central pattern generator networks. Curr Opin Neurobiol. 2011;21(5):685–692. doi: 10.1016/j.conb.2011.05.011.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171584/

Bartos M, Manor Y, Nadim F, Marder E & Nusbaum MP Coordination of fast and slow rhythmic neuronal circuitsJ. Neurosci 19, 6650–6660 (1999).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782802/

Nadim F, Manor Y, Nusbaum MP & Marder E Frequency regulation of a slow rhythm by a fast periodic inputJ. Neurosci 18, 5053–5067 (1998).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792559/

Lacquaniti F, Ivanenko YP, Zago M. Patterned control of human locomotion. J Physiol. 2012;590(10):2189–2199. doi: 10.1113/jphysiol.2011.215137.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424743/

Roenneberg T., Wirz-Justice A., Merrow M. Life between clocks: daily temporal patterns of human chronotypes. J. Biol. Rhythms. 2003; 1880-90

https://www.cell.com/action/showPdf?pii=S0960-9822%2816%2930333-5

Damiola F, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14:2950–2961. doi: 10.1101/gad.183500.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317100/

Erzberger A, Hampp G, Granada AE, Albrecht U, Herzel H. Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range. J. R. Soc. Interface. 2013;10:20130221. doi: 10.1098/rsif.2013.0221. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673158/

Aton SJ, Herzog ED (2005) Come together, right.now: synchronization of rhythms in a mammalian circadian clockNeuron 48: 531–534

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1780025/

Best JD, Maywood ES, Smith KL, Hastings MH (1999) Rapid resetting of the mammalian circadian clockJ Neurosci 19: 828–835

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782190/

Gonze D, Bernard S, Waltermann C, Kramer A, Herzel H (2005) Spontaneous synchronization of coupled circadian oscillatorsBiophys J 89: 120–129

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366510/

Granada AE, Herzel H (2009) How to achieve fast entrainment? The timescale to synchronizationPLoS One 4: e7057.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745570/

Granados-Fuentes D, Prolo LM, Abraham U, Herzog ED (2004) The suprachiasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulbJ Neurosci 24: 615–619

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729269/

Roenneberg T, Dragovic Z, Merrow M (2005) Demasking biological oscillators: properties and principles of entrainment exemplified by the neurospora circadian clockProc Natl Acad Sci USA 102: 7742–7747

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1140435/

Westermark PO, Welsh DK, Okamura H, Herzel H (2009) Quantification of circadian rhythms in single cellsPLoS Comput Biol 5: e1000580.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776301/

Guo H, Brewer JM, Champhekar A, Harris RB, Bittman EL. Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc. Natl. Acad. Sci. USA. 2005;102:3111–3116.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC548796/

Bordyugov G, Abraham U, Granada A, Rose P, Imkeller K, Kramer A, Herzel H. Physiology of Circadian Entrainment. J R Soc Interface. 2015 Jul 6;12(108):20150282. doi: 10.1098/rsif.2015.0282.

https://journals.physiology.org/doi/pdf/10.1152/physrev.00009.2009

Oscillations and Entrainment

Wilson CJ, Higgs MH, Simmons DV, Morales JC. Oscillations and Spike Entrainment. F1000Res. 2018 Dec 20;7. pii: F1000 Faculty Rev-1960. doi: 10.12688/f1000research.16451.1. eCollection 2018. Review.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305216/

Butcher PA, Taylor JA. Decomposition of a sensory prediction error signal for visuomotor adaptation. J Exp Psychol Hum Percept Perform. 2018 Feb;44(2):176-194. doi: 10.1037/xhp0000440. Epub 2017 May 15.

Schlerf JE, Ivry RB, Diedrichsen J. Encoding of Sensory Prediction Errors in the Human Cerebellum. Journal of Neuroscience. 2012;32(14):4913–4922.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332713/

Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: From environment to theory of mind. Neuron. 2008;58(3):306–324.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441869/

Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. 2019 Jan;20(1):49-65. doi: 10.1038/s41583-018-0088-y. Review.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338075/

Bordyugov G, Abraham U, Granada A, Rose P, Imkeller K, Kramer A, Herzel H. Tuning the phase of circadian entrainment. J R Soc Interface. 2015 Jul 6;12(108):20150282. doi: 10.1098/rsif.2015.0282.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528595/

Abraham U, Granada AE, Westermark PO, Heine M, Kramer A, Herzel H. 2010. Coupling governs entrainment range of circadian clocksMol. Syst. Biol. 6, 438 (10.1038/msb.2010.92)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010105/

Bernard S, Gonze D, Cajavec B, Herzel H, Kramer A (2007) Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleusPLoS Comput Biol 3: e68.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1851983/

Gonze D, Bernard S, Waltermann C, Kramer A, Herzel H (2005) Spontaneous synchronization of coupled circadian oscillatorsBiophys J 89: 120–129

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366510/

Granada AE, Herzel H (2009) How to achieve fast entrainment? The timescale to synchronizationPLoS One 4: e7057.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745570/

Relógio A, Westermark PO, Wallach T, Schellenberg K, Kramer A, Herzel H. 2011. Tuning the mammalian circadian clock: robust synergy of two loopsPLoS Comp. Biol. 7, e1002309 (10.1371/journal.pcbi.1002309) 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240597/

Buhr ED, Yoo SH, Takahashi JS. 2010. Temperature as a universal resetting cue for mammalian circadian oscillatorsScience 330, 379–385. (10.1126/science.1195262)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625727/

Rohling JH, Tjebbe vander Leest H, Michel S, Vansteensel MJ, Meijer JH. 2011. Phase resetting of the mammalian circadian clock relies on a rapid shift of a small population of pacemaker neuronsPLoS ONE 6, e25437 (10.1371/journal.pone.0025437)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178639/

Prediction Error & Cognitive Processing

Marko MK, Haith AM, Harran MD, Shadmehr R. Sensitivity to prediction error in reach adaptation. Journal of neurophysiology. 2012;108(6):1752–63.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774589/

Izawa J, Pekny SE, Marko MK, Haswell CC, Shadmehr R, Mostofsky SH. Motor learning relies on integrated sensory inputs in ADHD, but over-selectively on proprioception in autism spectrum conditionsAutism Res 5: 124–136, 2012b

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329587/

Schlerf JE, Ivry RB, Diedrichsen J. Encoding of Sensory Prediction Errors in the Human Cerebellum. Journal of Neuroscience. 2012;32(14):4913–4922.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332713/

Popa LS, Ebner TJ. Cerebellum, Predictions and Errors. Front Cell Neurosci. 2019 Jan 15;12:524. doi: 10.3389/fncel.2018.00524. eCollection 2018.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6340992/

Barrett L. F., Simmons W. K. (2015). Interoceptive predictions in the brainNat. Rev. Neurosci. 16, 419–429. 10.1038/nrn3950

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731102/

Chennu S, et al. Expectation and attention in hierarchical auditory prediction. J. Neurosci. 2013;33:11194–11205.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718380/

Seth AK, Suzuki K, Critchley HD. An interoceptive predictive coding model of conscious presence. Front. Psychol. 2011;2:395.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254200/

Feldman H, Friston KJ. Attention, uncertainty, and free-energy. Front. Hum. Neurosci. 2010;4:215.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001758/

Oosterwijk S, et al. States of mind: emotions, body feelings, and thoughts share distributed neural networks. Neuroimage. 2012;62:2110–2128.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3453527/

Barrett LF, Mesquita B, Ochsner KN, Gross JJ. The experience of emotion. Annual review of psychology. 2007;58:373–373

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934613/

Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: From environment to theory of mind. Neuron. 2008;58(3):306–324.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441869/

Duncan S, Barrett LF. Affect is a form of cognition: A neurobiological analysis. Cognition and Emotion. 2007;21:1184–1211.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396787/

Quattrocki E, Friston K. Autism, oxytocin and interoception. Neurosci. Biobehav. Rev. 2014;47:410–430.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726659/

Apps M.A., Tsakiris M. The free-energy self: a predictive coding account of self-recognition. Neurosci. Biobehav. Rev. 2014;41:85–97.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848896/

Sinha P, et al. Autism as a disorder of prediction. Proc. Natl Acad. Sci. USA. 2014;111:15220–15225.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210351/

Paulus MP, Stein MB. Interoception in anxiety and depression. Brain Struct. Funct. 2010;214:451–463. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886901/

den Ouden HE, Kok P, de Lange FP. How prediction errors shape perception, attention, and motivation. Front Psychol. 2012 Dec 11;3:548. doi: 10.3389/fpsyg.2012.00548. eCollection 2012.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518876/

Fries P: Rhythms for Cognition: Communication through Coherence. Neuron. 2015;88(1):220–35. 10.1016/j.neuron.2015.09.034

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605134/

Sensory Motor Processing

Butcher PA, Taylor JA. Decomposition of a sensory prediction error signal for visuomotor adaptation. J Exp Psychol Hum Percept Perform. 2018 Feb;44(2):176-194. doi: 10.1037/xhp0000440. Epub 2017 May 15.

Albert ST, Shadmehr R. The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System. Journal of Neuroscience. 2016;36(17):4832–4845.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846676/

Herzfeld DJ, Vaswani PA, Marko M, Shadmehr R. A memory of errors in sensorimotor learning. Science. 2014 1349.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506639/

Marko MK, Haith AM, Harran MD, Shadmehr R. Sensitivity to prediction error in reach adaptation. Journal of neurophysiology. 2012;108(6):1752–63.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774589/

Izawa J, Pekny SE, Marko MK, Haswell CC, Shadmehr R, Mostofsky SH. Motor learning relies on integrated sensory inputs in ADHD, but over-selectively on proprioception in autism spectrum conditionsAutism Res 5: 124–136, 2012b

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329587/

Izawa J, Shadmehr R. Learning from Sensory and Reward Prediction Errors during Motor Adaptation. PLoS Comput Biol. 2011;7 e1002012.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3053313/

Schlerf JE, Ivry RB, Diedrichsen J. Encoding of Sensory Prediction Errors in the Human Cerebellum. Journal of Neuroscience. 2012;32(14):4913–4922.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332713/

Wei K, Körding K. Relevance of error: what drives motor adaptation? Journal of neurophysiology. 2009;101(2):655–64.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2657056/

Harris-Warrick R.M. Neuromodulation and flexibility in central pattern generator networks. Curr. Opin. Neurobiol. 2011;21:685–692.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171584/

De Lazzari F, Bisaglia M, Zordan MA, Sandrelli F. Circadian Rhythm Abnormalities in Parkinson’s Disease from Humans to Flies and Back. Int J Mol Sci. 2018 Dec 6;19(12). pii: E3911. doi: 10.3390/ijms19123911. Review.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321023/

Videnovic A., Golombek D. Circadian Dysregulation in Parkinson’s Disease. Neurobiol. Sleep Circadian Rhythm. 2017;2:53–58. doi: 10.1016/j.nbscr.2016.11.001.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509072/

Li S., Wang Y., Wang F., Hu L.-F., Liu C.-F. A New Perspective for Parkinson’s Disease: Circadian Rhythm. Neurosci. Bull. 2017;33:62–72. doi: 10.1007/s12264-016-0089-7.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5567551/

Thaut MH, McIntosh GC, Hoemberg V. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system. Front Psychol. 2015 Feb 18;5:1185. doi: 10.3389/fpsyg.2014.01185. eCollection 2014. Review.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344110/

Auditory Processing

Bizley, Jennifer K, and Yale E Cohen. “The what, where and how of auditory-object perception.” Nature reviews. Neuroscience vol. 14,10 (2013): 693-707. doi:10.1038/nrn3565

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082027/

Shinn-Cunningham BG. Object-based auditory and visual attention. Trends Cogn Sci. 2008;12:182–186.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699558/

 

DiCarlo JJ, Zoccolan D, Rust NC. How does the brain solve visual object recognition? Neuron. 2012;73:415–434.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306444/

Hill KT, Miller LM. Auditory attentional control and selection during cocktail party listening. Cereb Cortex. 2010;20:583–590.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820699/

 

Shamma SA, Elhilali M, Micheyl C. Temporal coherence and attention in auditory scene analysis. Trends Neurosci. 2011;34:114–123.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073558/

Middlebrooks JC, Onsan ZA. Stream segregation with high spatial acuity. J Acoust Soc Am. 2012;132:3896–3911.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528685/

 

Teki S, et al. Navigating the auditory scene: an expert role for the hippocampus. J Neurosci. 2012;32:12251–12257.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448926/

Ahveninen J, et al. Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci USA. 2006;103:14608–14613.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1600007/

Ding N, Simon JZ. Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. J Neurophysiol. 2012;107:78–89.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570829/

Shamma S. On the emergence and awareness of auditory objects. PLoS Biol. 2008;6:e155.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2435155/

Lee AK, Shinn-Cunningham BG. Effects of reverberant spatial cues on attention-dependent object formation. J Assoc Res Otolaryngol. 2008;9:150–160.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536802/

Snyder JS, Carter OL, Hannon EE, Alain C. Adaptation reveals multiple levels of representation in auditory stream segregation. J Exp Psychol Hum Percept Perform. 2009;35:1232–1244.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726626/

King AJ, Nelken I. Unraveling the principles of auditory cortical processing: can we learn from the visual system? Nature Neurosci. 2009;12:698–701.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657701/

Obleser J, Leaver AM, Vanmeter J, Rauschecker JP. Segregation of vowels and consonants in human auditory cortex: evidence for distributed hierarchical organization. Front Psychol. 2010;1:232.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125530/

Kashino M, Kondo HM. Functional brain networks underlying perceptual switching: auditory streaming and verbal transformations. Phil Trans R Soc B. 2012;367:977–987.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282314/

Micheyl C, Kreft H, Shamma S, Oxenham AJ. Temporal coherence versus harmonicity in auditory stream formation. J Acoust Soc Am. 2013;133:EL188–EL194.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579859/

Gutschalk A, Micheyl C, Oxenham AJ. Neural correlates of auditory perceptual awareness under informational masking. PLoS Biol. 2008;6:e138.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2422852/

Micheyl C, et al. The role of auditory cortex in the formation of auditory streams. Hear Res. 2007;229:116–131.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2040076/

Pressnitzer D, Sayles M, Micheyl C, Winter IM. Perceptual organization of sound begins in the auditory periphery. Curr Biol. 2008;18:1124–1128.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559912/

Shamma SA, Micheyl C. Behind the scenes of auditory perception. Curr Opin Neurobiol. 2010;20:361–366.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901988/

Riecke L, Micheyl C, Oxenham AJ. Global not local masker features govern the auditory continuity illusion. J Neurosci. 2012;32:4660–4664.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357484/

Niwa M, Johnson JS, O’Connor KN, Sutter ML. Differences between primary auditory cortex and auditory belt related to encoding and choice for AM sounds. J Neurosci. 2013;33:8378–8395.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804137/

Lemus L, Hernandez A, Romo R. Neural codes for perceptual discrimination of acoustic flutter in the primate auditory cortex. Proc Natl Acad Sci USA. 2009;106:9471–9476.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684844/

Kilian-Hutten N, Valente G, Vroomen J, Formisano E. Auditory cortex encodes the perceptual interpretation of ambiguous sound. J Neurosci. 2011;31:1715–1720.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6623724/

Walker KM, Bizley JK, King AJ, Schnupp JW. Multiplexed and robust representations of sound features in auditory cortex. J Neurosci. 2011;31:14565–14576.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272412/

Hackett TA. Information flow in the auditory cortical network. Hear Res. 2011;271:133–146.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022347/

 

Griffiths TD, Hall DA. Mapping pitch representation in neural ensembles with fMRI. J Neurosci. 2012;32:13343–13347.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621372/

Hall DA, Plack CJ. Pitch processing sites in the human auditory brain. Cereb Cortex. 2009;19:576–585.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638814/

Griffiths TD, et al. Direct recordings of pitch responses from human auditory cortex. Curr Biol. 2010;20:1128–1132.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221038/

Leaver AM, Van Lare J, Zielinski B, Halpern AR, Rauschecker JP. Brain activation during anticipation of sound sequences. J Neurosci. 2009;29:2477–2485.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892726/

Conway C. M., Pisoni D. B., Kronenberger W. G. (2009). The importance of sound for cognitive sequending abilities. Curr. Dir. Psychol. Sci. 18 275–279 10.1111/j.1467-8721.2009.01651.x

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923391/

Bizley JK, King AJ. Visual–auditory spatial processing in auditory cortical neurons. Brain Research. 2008;1242:24–36.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340571/