Tuning Fork Bibliography

Fascia and Piezoelectricity

Langevin, H.M. and Yandow, J.A. (2002), Relationship of acupuncture points and meridians to connective tissue planes. Anat. Rec., 269: 257-265. doi:10.1002/ar.10185

 https://onlinelibrary.wiley.com/doi/full/10.1002/ar.10185

Yang C, Du YK, Wu JB, et al. Fascia and Primo Vascular System. Evid Based Complement Alternat Med. 2015;2015:303769. doi:10.1155/2015/303769

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4561979/

Findley TW. Fascia Research from a Clinician/Scientist’s Perspective. Int J Ther Massage Bodywork. 2011;4(4):1–6. doi:10.3822/ijtmb.v4i4.158

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3242643/

Gusmão CV, Belangero WD. HOW DO BONE CELLS SENSE MECHANICAL LOADING?. Rev Bras Ortop. 2015;44(4):299–305. Published 2015 Dec 8. doi:10.1016/S2255-4971(15)30157-9

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799046/

Yu Bai, Lin Yuan, Kwang-Sup Soh, Byung-Cheon Lee, Yong Huang, Chun-lei Wang, Jun Wang, Jin-peng Wu, Jing-xing Dai, Janos Palhalmi, Ou Sha, David Tai Wai Yew, Possible Applications for Fascial Anatomy and Fasciaology in Traditional Chinese Medicine, Journal of Acupuncture and Meridian Studies, Vol 3, Issue 2, 2010, Pgs 125-132,
doi.org/10.1016/S2005-2901(10)60023-4.

http://www.sciencedirect.com/science/article/pii/S2005290110600234

Langevin H. M., Bouffard N. A., Fox J. R., et al. Fibroblast cytoskeletal remodeling contributes to connective tissue tension. Journal of Cellular Physiology2011;226(5):1166–1175. doi: 10.1002/jcp.22442.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3053527/​

Langevin H. M., Storch K. N., Snapp R. R., et al. Tissue stretch induces nuclear remodeling in connective tissue fibroblasts. Histochemistry and Cell Biology2010;133(4):405–415. doi: 10.1007/s00418-010-0680-3.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880391/

Abbott R. D., Koptiuch C., Iatridis J. C., Howe A. K., Badger G. J., Langevin H. M. Stress and matrix-responsive cytoskeletal remodeling in fibroblasts. Journal of Cellular Physiology2013;228(1):50–57. doi: 10.1002/jcp.24102

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3414643/

Bai Y., Wang J., Wu J.-P., et al. Review of evidence suggesting that the fascia network could be the anatomical basis for acupoints and meridians in the human body. Evidence-Based Complementary and Alternative Medicine2011;2011:6. doi: 10.1155/2011/260510.260510

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092510/

Grinnell F. Fibroblast mechanics in three-dimensional collagen matrices. Journal of Bodywork and Movement Therapies2008;12(3):191–193.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605607/

Rhee S, Jiang H, Ho CH, Grinnell F. Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactions. Proc Natl Acad Sci USA. 2007;104:5425–30.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838480/

Brain and Body Physiology

Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):26. Published 2014 Dec 2. doi:10.1186/2045-8118-11-26

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4326185/

Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest. 2013;123:1299–1309. doi: 10.1172/JCI67677.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582150/

Nedergaard M. Neuroscience. Garbage truck of the brain. Science. 2013;340:1529–1530. doi: 10.1126/science.1240514.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749839/

Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4:147ra111. doi: 10.1126/scitranslmed.3003748

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551275/

ykova E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev. 2008;88:1277–1340. doi: 10.1152/physrev.00027.2007

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785730/

Brinker T, Stopa EG, Morrison J, Klinge PM. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10. doi: 10.1186/2045-8118-11-10.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4016637/

Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem. 2009;78:929–58.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846778/

Nervous System

Birznieks I, McIntyre S, Nilsson HM, et al. Tactile sensory channels over-ruled by frequency decoding system that utilizes spike pattern regardless of receptor type. Elife. 2019;8:e46510. Published 2019 Aug 6. doi:10.7554/eLife.46510

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684274/

Saal HP, Wang X, Bensmaia SJ. Importance of spike timing in touch: an analogy with hearing? Current Opinion in Neurobiology. 2016;40:142–149. doi: 10.1016/j.conb.2016.07.013.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315566/

Bove GM. Epi-perineurial anatomy, innervation, and axonal nociceptive mechanisms. Journal of Bodywork and Movement Therapies2008;12(3):185–190.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610338/

LOEWENSTEIN WR, RATHKAMP R. The sites for mechano-electric conversion in a Pacinian corpuscle. J Gen Physiol. 1958;41(6):1245–1265. doi:10.1085/jgp.41.6.1245

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2194881/

Vallbo AB, Olausson H, Wessberg J, Kakuda N. Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects. The Journal of Physiology. 1995;483:783–795. doi: 10.1113/jphysiol.1995.sp020622

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1157818/

Saal HP, Delhaye BP, Rayhaun BC, Bensmaia SJ. Simulating tactile signals from the whole hand with millisecond precision. PNAS. 2017;114:E5693–E5702. doi: 10.1073/pnas.1704856114.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514748/

Town SM, Bizley JK. Neural and behavioral investigations into timbre perception. Front. Syst. Neurosci. 2013;7:88.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826062/

Strzalkowski ND, Incognito AV, Bent LR, Millar PJ. Cutaneous Mechanoreceptor Feedback from the Hand and Foot Can Modulate Muscle Sympathetic Nerve Activity. Front Neurosci. 2016;10:568. Published 2016 Dec 8. doi:10.3389/fnins.2016.00568

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5143677/

Zimmerman A., Bai L., Ginty D. D. (2014). The gentle touch receptors of mammalian skinScience 346, 950–954. 10.1126/science.1254229

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4450345/

Yau J. M., Kim S. S., Thakur P. H., Bensmaia S. J. (2016). Feeling form: the neural basis of haptic shape perceptionJ. Neurophysiol. 115, 631–642. 10.1152/jn.00598.2015

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752307/

Strzalkowski N. D., Triano J. J., Lam C. K., Templeton C. A., Bent L. R. (2015b). Thresholds of skin sensitivity are partially influenced by mechanical properties of the skin on the foot solePhysiol. Rep. 3:e12425. 10.14814/phy2.12425

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510627/

Strzalkowski N. D., Mildren R. L., Bent L. R. (2015a). Thresholds of cutaneous afferents related to perceptual threshold across the human foot soleJ. Neurophysiol. 114, 2144–2151. 10.1152/jn.00524.2015

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4595609/

Donadio V., Kallio M., Karlsson T. (2002a). Inhibition of human muscle sympathetic activity by sensory stimulationJ. Physiol. 544, 285–292. 10.1113/jphysiol.2002.019596

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290575/

Cui J., Blaha C., Moradkhan R., Gray K. S., Sinoway L. I. (2006). Muscle sympathetic nerve activity responses to dynamic passive muscle stretch in humansJ. Physiol. 576, 625–634. 10.1113/jphysiol.2006.116640

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1890351/

Burke D., Hagbarth K. E., Löfstedt L., Wallin B. G. (1976). The responses of human muscle spindle endings to vibration of non-contracting musclesJ. Physiol. 261, 673–693. 10.1113/jphysiol.1976.sp011580

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1309166/

Burton A. R., Fazalbhoy A., Macefield V. G. (2016). Sympathetic responses to noxious stimulation of muscle and skinFront. Neurol. 7:109. 10.3389/fneur.2016.00109

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4927631/

Bensmaia S. J., Hollins M. (2003). The vibrations of textureSomatosens. Mot. Res. 20, 33–43. 10.1080/0899022031000083825

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2074877/

Beissner F., Meissner K., Bär K. J., Napadow V. (2013). The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic functionJ. Neurosci. 33, 10503–10511. 10.1523/JNEUROSCI.1103-13.2013

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685840/

 

Abraira V. E., Ginty D. D. (2013). The sensory neurons of touchNeuron 79, 618–639. 10.1016/j.neuron.2013.07.051

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811145/

Cauna N, Ross LL. The Fine Structure of Meissners Touch Corpuscles of Human Fingers. J Biophys Biochem Cy. 1960;8:467–482.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2224947/

Hubbard SJ. A study of rapid mechanical events in a mechanoreceptor. The Journal of physiology. 1958;141:198–218.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1358795/

Neural Synchronization

Brette R. Computing with Neural Synchrony. PLoS Comput. Biol. 2012;8:e1002561.

ncbi.nlm.nih.gov/pmc/articles/PMC3375225/

Cedolin L, Delgutte B. Spatiotemporal representation of the pitch of harmonic complex tones in the auditory nerve. J. Neurosci. 2010;30:12712–12724.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2957107/

Mackevicius EL, Best MD, Saal HP, Bensmaia SJ. Millisecond Precision Spike Timing Shapes Tactile Perception. J. Neurosci. 2012;32:15309–15317.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752122/

Saal HP, Harvey MA, Bensmaia SJ. Rate and timing of cortical responses driven by separate sensory channels. Elife. 2015;4:7250–7257.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4755746/

Cedolin L, Delgutte B. Pitch of complex tones: rate-place and interspike interval representations in the auditory nerve. J. Neurophysiol. 2005;94:347–362.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2094528/

Accordion McKinney MF, Delgutte B. A possible neurophysiological basis of the octave enlargement effect. J Acoust Soc Am. 1999;73:1694–1700.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2346780/

Muniak MA, Ray S, Hsiao SS, Dammann JF, Bensmaia SJ. The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior. J. Neurosci. 2007;27:11687–11699.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673240/

Yau JM, Olenczak JB, Dammann JF, Bensmaia SJ. Temporal frequency channels are linked across audition and touch. Curr Biol. 2009;19:561–566.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700739/

Rauschecker JP, Tian B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci U S A. 2000;97:11800–11806.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC34352/

Fu KM, Johnston TA, Shah AS, Arnold L, Smiley J, Hackett TA, Garraghty PE, Schroeder CE. Auditory cortical neurons respond to somatosensory stimulation. Journal of Neuroscience. 2003;23:7510–7515.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740753/

Driver J, Noesselt T. Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron. 2008;57:11–23. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427054/

Salinas E, Hernandez A, Zainos A, Romo R. Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J Neurosci. 2000;20:5503–5515.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772326/

aal HP, Vijayakumar S, Johansson RS. Information about complex fingertip parameters in individual human tactile afferent neurons. J Neurosci. 2009;29:8022–8031.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6666033/

Pei YC, Hsiao SS, Bensmaia SJ. The tactile integration of local motion cues is analogous to its visual counterpart. Proc Natl Acad Sci U S A. 2008;105:8130–8135.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2430371/

Johnson KO, Hsiao SS, Yoshioka T. Neural coding and the basic law of psychophysics. Neuroscientist. 2002;8:111–121.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1994651/

Johansson RS, Vallbo AB. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol. 1979;286:283–300.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1281571/

Jacobs AL, Fridman G, Douglas RM, Alam NM, Latham PE, Prusky GT, Nirenberg S. Ruling out and ruling in neural codes. Proc Natl Acad Sci U S A. 2009;106:5936–5941.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2657589/

Gamzu E, Ahissar E. Importance of temporal cues for tactile spatial-frequency discrimination. J Neurosci. 2001;21:7416–7427.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6763008/

Bensmaia SJ, Denchev PV, Dammann JF, 3rd, Craig JC, Hsiao SS. The representation of stimulus orientation in the early stages of somatosensory processing. J Neurosci. 2008;28:776–786.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6670339/

Jóhannesson ÓI, Hoffmann R, Valgeirsdóttir VV, Unnþórsson R, Moldoveanu A, Kristjánsson Á. Relative vibrotactile spatial acuity of the torso. Exp Brain Res. 2017;235(11):3505–3515. doi:10.1007/s00221-017-5073-6

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5649388/

Accordion Content

Circadian and Peripheral Rhythm

Roenneberg T, Merrow M. The Circadian Clock and Human Health. Curr Biol. 2016 May 23;26(10):R432-43. doi:  0.1016/j.cub.2016.04.011. Review.

Mohawk JA, Green CB, Takahashi JS. 2012. Central and peripheral circadian clocks in mammalsAnnu. Rev. Neurosci. 35, 445–46210.1146/annurev-neuro-060909-153128

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710582/

Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105:15172–15177.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2532700/

Heyde I, Oster H. Differentiating external zeitgeber impact on peripheral circadian clock resetting. Sci Rep. 2019;9(1):20114. Published 2019 Dec 27. doi:10.1038/s41598-019-56323-z

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934673/

Abraham U, Granada AE, Westermark PO, Heine M, Kramer A, Herzel H. Coupling governs entrainment range of circadian clocks. Mol. Syst. Biol. 2010;6:438.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010105/

Granada AE, Cambras T, Diez-Noguera A, Herzel H. 2010. Circadian desynchronizationJ. R. Soc. Interface Focus 1, 153–16610.1098/rsfs.2010.0002

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262243/

Kevin D. Himberger, Hsiang-Yun Chien, Christopher J. Honey, Principles of Temporal Processing Across the Cortical Hierarchy, Neuroscience, Volume 389, 2018, Pages 161-174, ISSN 0306-4522, doi.org/10.1016/j.neuroscience.2018.04.030.

http://www.sciencedirect.com/science/article/pii/S0306452218302951

Zhang Y, Khorkova O, Rodriguez R, Golowasch J. Activity and neuromodulatory input contribute to the recovery of rhythmic output after decentralization in a central pattern generator. J Neurophysiol. 2009;101:372–386.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637013/

LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci. 2014;15(7):443–454. doi:10.1038/nrn3743

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254760/

Boivin DB. Influence of sleep-wake and circadian rhythm disturbances in psychiatric disorders. J Psychiatry Neurosci. 2000;25:446–58.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1408010/

Kiessling S, Eichele G, Oster H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J Clin Invest. 2010;120:2600–9.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898589/

Ruby NF, et al. Hippocampal-dependent learning requires a functional circadian system. Proc Natl Acad Sci U S A. 2008;105:15593–8.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563080/

 

Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci U S A. 2011;108:1657–62.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3029753/

Balasubramaniam P, Jarina Banu L. Synchronization criteria of discrete-time complex networks with time-varying delays and parameter uncertainties. Cogn Neurodyn. 2014;8:199–215. doi: 10.1007/s11571-013-9272-y.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012067/

Qu J, Wang R, Yan C, Du Y (2013) Oscillations and synchrony in a cortical neural network. Cogn Neurodyn. doi:10.1007/s11571-013-9268-7

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945459/

Shi X, Wang QY, Lu QS. Firing synchronization and temporal order in noisy neuronal networks. Cogn Neurodyn. 2008;2(3):195–206. doi: 10.1007/s11571-008-9055-z.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518750/

Sun WG, Wang RB, Wang WX, Cao JT. Analyzing inner and outer synchronization between two coupled discrete-time networks with time delays. Cogn Neurodyn. 2010;4(3):225–231. doi: 10.1007/s11571-010-9118-9.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918754/

Yu S, Huang DB, Singer W, et al. A small world of neuronal synchrony. Cereb Cortex. 2008;18(2):2891–2901. doi: 10.1093/cercor/bhn047.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583154/

Harris-Warrick RM. Neuromodulation and flexibility in central pattern generator networks. Curr Opin Neurobiol. 2011;21(5):685–692. doi: 10.1016/j.conb.2011.05.011.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171584/

Bartos M, Manor Y, Nadim F, Marder E & Nusbaum MP Coordination of fast and slow rhythmic neuronal circuitsJ. Neurosci 19, 6650–6660 (1999).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782802/

Nadim F, Manor Y, Nusbaum MP & Marder E Frequency regulation of a slow rhythm by a fast periodic inputJ. Neurosci 18, 5053–5067 (1998).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6792559/

Lacquaniti F, Ivanenko YP, Zago M. Patterned control of human locomotion. J Physiol. 2012;590(10):2189–2199. doi: 10.1113/jphysiol.2011.215137.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424743/

Roenneberg T., Wirz-Justice A., Merrow M. Life between clocks: daily temporal patterns of human chronotypes. J. Biol. Rhythms. 2003; 1880-90

https://www.cell.com/action/showPdf?pii=S0960-9822%2816%2930333-5

Damiola F, et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14:2950–2961. doi: 10.1101/gad.183500.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317100/

Erzberger A, Hampp G, Granada AE, Albrecht U, Herzel H. Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range. J. R. Soc. Interface. 2013;10:20130221. doi: 10.1098/rsif.2013.0221. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673158/

Aton SJ, Herzog ED (2005) Come together, right.now: synchronization of rhythms in a mammalian circadian clockNeuron 48: 531–534

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1780025/

Best JD, Maywood ES, Smith KL, Hastings MH (1999) Rapid resetting of the mammalian circadian clockJ Neurosci 19: 828–835

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6782190/

Gonze D, Bernard S, Waltermann C, Kramer A, Herzel H (2005) Spontaneous synchronization of coupled circadian oscillatorsBiophys J 89: 120–129

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366510/

Granada AE, Herzel H (2009) How to achieve fast entrainment? The timescale to synchronizationPLoS One 4: e7057.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745570/

Granados-Fuentes D, Prolo LM, Abraham U, Herzog ED (2004) The suprachiasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulbJ Neurosci 24: 615–619

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729269/

Roenneberg T, Dragovic Z, Merrow M (2005) Demasking biological oscillators: properties and principles of entrainment exemplified by the neurospora circadian clockProc Natl Acad Sci USA 102: 7742–7747

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1140435/

Westermark PO, Welsh DK, Okamura H, Herzel H (2009) Quantification of circadian rhythms in single cellsPLoS Comput Biol 5: e1000580.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2776301/

Guo H, Brewer JM, Champhekar A, Harris RB, Bittman EL. Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc. Natl. Acad. Sci. USA. 2005;102:3111–3116.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC548796/

Bordyugov G, Abraham U, Granada A, Rose P, Imkeller K, Kramer A, Herzel H. Physiology of Circadian Entrainment. J R Soc Interface. 2015 Jul 6;12(108):20150282. doi: 10.1098/rsif.2015.0282.

https://journals.physiology.org/doi/pdf/10.1152/physrev.00009.2009

Oscillations and Entrainment

Wilson CJ, Higgs MH, Simmons DV, Morales JC. Oscillations and Spike Entrainment. F1000Res. 2018 Dec 20;7. pii: F1000 Faculty Rev-1960. doi: 10.12688/f1000research.16451.1. eCollection 2018. Review.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305216/

Butcher PA, Taylor JA. Decomposition of a sensory prediction error signal for visuomotor adaptation. J Exp Psychol Hum Percept Perform. 2018 Feb;44(2):176-194. doi: 10.1037/xhp0000440. Epub 2017 May 15.

Schlerf JE, Ivry RB, Diedrichsen J. Encoding of Sensory Prediction Errors in the Human Cerebellum. Journal of Neuroscience. 2012;32(14):4913–4922.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332713/

Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: From environment to theory of mind. Neuron. 2008;58(3):306–324.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441869/

Logan RW, McClung CA. Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci. 2019 Jan;20(1):49-65. doi: 10.1038/s41583-018-0088-y. Review.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338075/

Bordyugov G, Abraham U, Granada A, Rose P, Imkeller K, Kramer A, Herzel H. Tuning the phase of circadian entrainment. J R Soc Interface. 2015 Jul 6;12(108):20150282. doi: 10.1098/rsif.2015.0282.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528595/

Abraham U, Granada AE, Westermark PO, Heine M, Kramer A, Herzel H. 2010. Coupling governs entrainment range of circadian clocksMol. Syst. Biol. 6, 438 (10.1038/msb.2010.92)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010105/

Bernard S, Gonze D, Cajavec B, Herzel H, Kramer A (2007) Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleusPLoS Comput Biol 3: e68.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1851983/

Gonze D, Bernard S, Waltermann C, Kramer A, Herzel H (2005) Spontaneous synchronization of coupled circadian oscillatorsBiophys J 89: 120–129

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366510/

Granada AE, Herzel H (2009) How to achieve fast entrainment? The timescale to synchronizationPLoS One 4: e7057.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745570/

Relógio A, Westermark PO, Wallach T, Schellenberg K, Kramer A, Herzel H. 2011. Tuning the mammalian circadian clock: robust synergy of two loopsPLoS Comp. Biol. 7, e1002309 (10.1371/journal.pcbi.1002309) 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3240597/

Buhr ED, Yoo SH, Takahashi JS. 2010. Temperature as a universal resetting cue for mammalian circadian oscillatorsScience 330, 379–385. (10.1126/science.1195262)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625727/

Rohling JH, Tjebbe vander Leest H, Michel S, Vansteensel MJ, Meijer JH. 2011. Phase resetting of the mammalian circadian clock relies on a rapid shift of a small population of pacemaker neuronsPLoS ONE 6, e25437 (10.1371/journal.pone.0025437)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178639/

Prediction Error & Cognitive Processing

Marko MK, Haith AM, Harran MD, Shadmehr R. Sensitivity to prediction error in reach adaptation. Journal of neurophysiology. 2012;108(6):1752–63.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774589/

Izawa J, Pekny SE, Marko MK, Haswell CC, Shadmehr R, Mostofsky SH. Motor learning relies on integrated sensory inputs in ADHD, but over-selectively on proprioception in autism spectrum conditionsAutism Res 5: 124–136, 2012b

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329587/

Schlerf JE, Ivry RB, Diedrichsen J. Encoding of Sensory Prediction Errors in the Human Cerebellum. Journal of Neuroscience. 2012;32(14):4913–4922.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332713/

Popa LS, Ebner TJ. Cerebellum, Predictions and Errors. Front Cell Neurosci. 2019 Jan 15;12:524. doi: 10.3389/fncel.2018.00524. eCollection 2018.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6340992/

Barrett L. F., Simmons W. K. (2015). Interoceptive predictions in the brainNat. Rev. Neurosci. 16, 419–429. 10.1038/nrn3950

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731102/

Chennu S, et al. Expectation and attention in hierarchical auditory prediction. J. Neurosci. 2013;33:11194–11205.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718380/

Seth AK, Suzuki K, Critchley HD. An interoceptive predictive coding model of conscious presence. Front. Psychol. 2011;2:395.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254200/

Feldman H, Friston KJ. Attention, uncertainty, and free-energy. Front. Hum. Neurosci. 2010;4:215.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001758/

Oosterwijk S, et al. States of mind: emotions, body feelings, and thoughts share distributed neural networks. Neuroimage. 2012;62:2110–2128.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3453527/

Barrett LF, Mesquita B, Ochsner KN, Gross JJ. The experience of emotion. Annual review of psychology. 2007;58:373–373

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934613/

Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: From environment to theory of mind. Neuron. 2008;58(3):306–324.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441869/

Duncan S, Barrett LF. Affect is a form of cognition: A neurobiological analysis. Cognition and Emotion. 2007;21:1184–1211.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396787/

Quattrocki E, Friston K. Autism, oxytocin and interoception. Neurosci. Biobehav. Rev. 2014;47:410–430.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726659/

Apps M.A., Tsakiris M. The free-energy self: a predictive coding account of self-recognition. Neurosci. Biobehav. Rev. 2014;41:85–97.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848896/

Sinha P, et al. Autism as a disorder of prediction. Proc. Natl Acad. Sci. USA. 2014;111:15220–15225.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210351/

Paulus MP, Stein MB. Interoception in anxiety and depression. Brain Struct. Funct. 2010;214:451–463. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886901/

den Ouden HE, Kok P, de Lange FP. How prediction errors shape perception, attention, and motivation. Front Psychol. 2012 Dec 11;3:548. doi: 10.3389/fpsyg.2012.00548. eCollection 2012.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518876/

Fries P: Rhythms for Cognition: Communication through Coherence. Neuron. 2015;88(1):220–35. 10.1016/j.neuron.2015.09.034

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605134/

Sensory Motor Processing

Butcher PA, Taylor JA. Decomposition of a sensory prediction error signal for visuomotor adaptation. J Exp Psychol Hum Percept Perform. 2018 Feb;44(2):176-194. doi: 10.1037/xhp0000440. Epub 2017 May 15.

Albert ST, Shadmehr R. The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System. Journal of Neuroscience. 2016;36(17):4832–4845.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846676/

Herzfeld DJ, Vaswani PA, Marko M, Shadmehr R. A memory of errors in sensorimotor learning. Science. 2014 1349.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506639/

Marko MK, Haith AM, Harran MD, Shadmehr R. Sensitivity to prediction error in reach adaptation. Journal of neurophysiology. 2012;108(6):1752–63.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774589/

Izawa J, Pekny SE, Marko MK, Haswell CC, Shadmehr R, Mostofsky SH. Motor learning relies on integrated sensory inputs in ADHD, but over-selectively on proprioception in autism spectrum conditionsAutism Res 5: 124–136, 2012b

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329587/

Izawa J, Shadmehr R. Learning from Sensory and Reward Prediction Errors during Motor Adaptation. PLoS Comput Biol. 2011;7 e1002012.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3053313/

Schlerf JE, Ivry RB, Diedrichsen J. Encoding of Sensory Prediction Errors in the Human Cerebellum. Journal of Neuroscience. 2012;32(14):4913–4922.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332713/

Wei K, Körding K. Relevance of error: what drives motor adaptation? Journal of neurophysiology. 2009;101(2):655–64.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2657056/

Harris-Warrick R.M. Neuromodulation and flexibility in central pattern generator networks. Curr. Opin. Neurobiol. 2011;21:685–692.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171584/

De Lazzari F, Bisaglia M, Zordan MA, Sandrelli F. Circadian Rhythm Abnormalities in Parkinson’s Disease from Humans to Flies and Back. Int J Mol Sci. 2018 Dec 6;19(12). pii: E3911. doi: 10.3390/ijms19123911. Review.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321023/

Videnovic A., Golombek D. Circadian Dysregulation in Parkinson’s Disease. Neurobiol. Sleep Circadian Rhythm. 2017;2:53–58. doi: 10.1016/j.nbscr.2016.11.001.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5509072/

Li S., Wang Y., Wang F., Hu L.-F., Liu C.-F. A New Perspective for Parkinson’s Disease: Circadian Rhythm. Neurosci. Bull. 2017;33:62–72. doi: 10.1007/s12264-016-0089-7.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5567551/

Thaut MH, McIntosh GC, Hoemberg V. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system. Front Psychol. 2015 Feb 18;5:1185. doi: 10.3389/fpsyg.2014.01185. eCollection 2014. Review.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344110/

Auditory Processing

Bizley, Jennifer K, and Yale E Cohen. “The what, where and how of auditory-object perception.” Nature reviews. Neuroscience vol. 14,10 (2013): 693-707. doi:10.1038/nrn3565

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082027/

Shinn-Cunningham BG. Object-based auditory and visual attention. Trends Cogn Sci. 2008;12:182–186.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699558/

 

DiCarlo JJ, Zoccolan D, Rust NC. How does the brain solve visual object recognition? Neuron. 2012;73:415–434.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306444/

Hill KT, Miller LM. Auditory attentional control and selection during cocktail party listening. Cereb Cortex. 2010;20:583–590.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820699/

 

Shamma SA, Elhilali M, Micheyl C. Temporal coherence and attention in auditory scene analysis. Trends Neurosci. 2011;34:114–123.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073558/

Middlebrooks JC, Onsan ZA. Stream segregation with high spatial acuity. J Acoust Soc Am. 2012;132:3896–3911.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528685/

 

Teki S, et al. Navigating the auditory scene: an expert role for the hippocampus. J Neurosci. 2012;32:12251–12257.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448926/

Zonooz B, Van Opstal AJ. Differential Adaptation in Azimuth and Elevation to Acute Monaural Spatial Hearing after Training with Visual Feedback. eNeuro. 2019;6(6):ENEURO.0219-19.2019. Published 2019 Nov 1. doi:10.1523/ENEURO.0219-19.2019

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825955/

Ahveninen J, et al. Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci USA. 2006;103:14608–14613.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1600007/

Ding N, Simon JZ. Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. J Neurophysiol. 2012;107:78–89.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570829/

Shamma S. On the emergence and awareness of auditory objects. PLoS Biol. 2008;6:e155.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2435155/

Lee AK, Shinn-Cunningham BG. Effects of reverberant spatial cues on attention-dependent object formation. J Assoc Res Otolaryngol. 2008;9:150–160.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536802/

Snyder JS, Carter OL, Hannon EE, Alain C. Adaptation reveals multiple levels of representation in auditory stream segregation. J Exp Psychol Hum Percept Perform. 2009;35:1232–1244.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2726626/

King AJ, Nelken I. Unraveling the principles of auditory cortical processing: can we learn from the visual system? Nature Neurosci. 2009;12:698–701.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3657701/

Obleser J, Leaver AM, Vanmeter J, Rauschecker JP. Segregation of vowels and consonants in human auditory cortex: evidence for distributed hierarchical organization. Front Psychol. 2010;1:232.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3125530/

Kashino M, Kondo HM. Functional brain networks underlying perceptual switching: auditory streaming and verbal transformations. Phil Trans R Soc B. 2012;367:977–987.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282314/

Micheyl C, Kreft H, Shamma S, Oxenham AJ. Temporal coherence versus harmonicity in auditory stream formation. J Acoust Soc Am. 2013;133:EL188–EL194.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579859/

Gutschalk A, Micheyl C, Oxenham AJ. Neural correlates of auditory perceptual awareness under informational masking. PLoS Biol. 2008;6:e138.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2422852/

Micheyl C, et al. The role of auditory cortex in the formation of auditory streams. Hear Res. 2007;229:116–131.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2040076/

Pressnitzer D, Sayles M, Micheyl C, Winter IM. Perceptual organization of sound begins in the auditory periphery. Curr Biol. 2008;18:1124–1128.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559912/

Shamma SA, Micheyl C. Behind the scenes of auditory perception. Curr Opin Neurobiol. 2010;20:361–366.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901988/

Riecke L, Micheyl C, Oxenham AJ. Global not local masker features govern the auditory continuity illusion. J Neurosci. 2012;32:4660–4664.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3357484/

Niwa M, Johnson JS, O’Connor KN, Sutter ML. Differences between primary auditory cortex and auditory belt related to encoding and choice for AM sounds. J Neurosci. 2013;33:8378–8395.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804137/

Lemus L, Hernandez A, Romo R. Neural codes for perceptual discrimination of acoustic flutter in the primate auditory cortex. Proc Natl Acad Sci USA. 2009;106:9471–9476.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684844/

Kilian-Hutten N, Valente G, Vroomen J, Formisano E. Auditory cortex encodes the perceptual interpretation of ambiguous sound. J Neurosci. 2011;31:1715–1720.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6623724/

Walker KM, Bizley JK, King AJ, Schnupp JW. Multiplexed and robust representations of sound features in auditory cortex. J Neurosci. 2011;31:14565–14576.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272412/

Hackett TA. Information flow in the auditory cortical network. Hear Res. 2011;271:133–146.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022347/

 

Griffiths TD, Hall DA. Mapping pitch representation in neural ensembles with fMRI. J Neurosci. 2012;32:13343–13347.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621372/

Hall DA, Plack CJ. Pitch processing sites in the human auditory brain. Cereb Cortex. 2009;19:576–585.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638814/

Griffiths TD, et al. Direct recordings of pitch responses from human auditory cortex. Curr Biol. 2010;20:1128–1132.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3221038/

Leaver AM, Van Lare J, Zielinski B, Halpern AR, Rauschecker JP. Brain activation during anticipation of sound sequences. J Neurosci. 2009;29:2477–2485.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892726/

Conway C. M., Pisoni D. B., Kronenberger W. G. (2009). The importance of sound for cognitive sequending abilities. Curr. Dir. Psychol. Sci. 18 275–279 10.1111/j.1467-8721.2009.01651.x

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923391/

Bizley JK, King AJ. Visual–auditory spatial processing in auditory cortical neurons. Brain Research. 2008;1242:24–36.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340571/

Moore DR, Hine JE, Jiang ZD, Matsuda H, Parsons CH, King AJ. Conductive hearing loss produces a reversible binaural hearing impairment. J Neurosci. 1999;19(19):8704–8711. doi:10.1523/JNEUROSCI.19-19-08704.1999

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6783018/

Carlile S (2014) The plastic ear and perceptual learning in auditory spatial perceptionFront Neurosci 8:237. 10.3389/fnins.2014.00237

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123622/

Van Wanrooij MM, Van Opstal AJ. Relearning sound localization with a new ear. J Neurosci. 2005;25(22):5413–5424. doi:10.1523/JNEUROSCI.0850-05.2005

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6724994/

Contact to Listing Owner

Captcha Code